How Overnight Pulse Oximeters Work

By Lela Perkins


Overnight pulse oximeters are health devices used for noninvasively monitoring oxygen saturation in the human body. This equipment is utilized in a medical technique referred to as pulse oximetry. The device was created by a German doctor in 1935. Since that initial invention, there have been several other medical specialists who have incorporated components to the gadget with an attempt to make it more efficient.

Oximetry makes use of two small LEDs, light emitting diodes, which face a photodiode through a translucent part of the body. A fingertip, an earlobe, or a foot in case of an infant can be used. One of the LEDs is red and has a wavelength of about 660 nm. The other LED is normally infrared with a wavelength of either 905, 910, or 940 nm. The rate of absorption of the various wavelengths varies significantly between oxyhaemoglobin and its deoxygenated counterpart.

Due to the variations in the absorption of the red and infrared wavelengths, the oxyhemoglobin and deoxyhemoglobin ratio can be calculated. At the wavelengths of 590 and 805 nm, the absorbance of deoxyhemoglobin and oxyhemoglobin is similar. Earlier equipment used these wavelengths to correct hemoglobin concentration.

The monitored signal varies over time with the heart beat since the arterial blood vessels contract and expand with every heartbeat. By analyzing the varying section of the absorption spectrum only, a monitor is able to leave out nail polish or other tissues. By ignoring polish on nails and other tissues, the monitor can discern only absorption that is caused by arterial blood. It is therefore an important requirement to detect a pulse in this exercise, otherwise the oximetry will not work.

The monitor that checks the level of oxygen in blood displays the content of hemoglobin in arteries in oxyhemoglobin configuration. For people who do not experience COPD and hypoxic drive problems, the normal acceptable range stands between ninety five to 99 percent. People with hypoxic problems expect values between 89 to ninety four percent. Carbon (II) oxide poisoning is shown by 100 percent of the reading.

Oximetry is different from other methods of monitoring the level of oxygen in blood because it is an indirect approach. The equipment can be integrated into multi-parameter patient monitoring systems. Most of them also indicate the pulse rate of an individual under monitoring. Overnight pulse oximeters are normally portable so that they can be carried into homes for home-based medication. They are small and operate on batteries.

These devices can be used in a wide range of applications and environments. They are used in hospital wards, emergency units, urgent care facilities, unpressurized aircrafts, and intensive care units among many others. They are used to assess the need and efficiency of supplemental oxygen to people. The device however cannot determine the rate of metabolism of oxygen in the body. For this reason, it should be used with carbon dioxide monitoring devices complimentarily.

Overnight pulse oximeters are vital for patients in critical medical conditions. They alert health staff of abnormalities in levels of oxygen in patients. Improvements in technology have rendered it possible to control them remotely for purposes of convenience.




About the Author: